Beyond GTL-FT: Large-scale gas conversion through oxygenates

by
Dr. Theo Fleisch
Distinguished Advisor, Global Gas Technology, BP
Dr. Ron Sills (Presenter)
Gas Conversion Network Leader, BP

Presented at
7th Natural Gas Conversion Symposium
June 9, 2004
Dalian, China
Market Led GTL: The Oxygenate Strategy

Paper presented at 6th NGCS in 2001

- Oxygenates (Methanol, DME) have huge market potential
- Oxygenates are clean, high performing products and chemical feedstocks

<table>
<thead>
<tr>
<th></th>
<th>Methanol</th>
<th>DME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LPG</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>Diesel Engines</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>Fuel Cells</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MTO, MTP and MTG</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Cost reductions are important (technologies, economy of scale)
- Market development is required
Focus: Significant progress since 2001 to commercialize GTL technologies for producing oxygenates

- About Methanol: Trends, Supply, New Markets
- About DME: Global Commercialization Activities
- “Poly-DMM” and DMC – Promising Fuels for Blending
- Beyond Methanol
- Key Messages
Methanol Plant Costs are Decreasing

BP and Methanex announced that the industry pacesetter 5,000 TPD Atlas plant started-up on June 2, 2004.
The changing methanol business

Today: Methanol

- 31 Million MT/yr commodity chemical business
- Derivative Slate: Formaldehyde, Acetic Acid, MTBE, DME.
- Industry rationalizing
- New Markets: DME, Olefins and Power.

Methanol Production

New Markets

Methanol Derivatives

- Formaldehyde
- Acetic Acid
- MTBE
- DME
- Olefins (MTO/MTP)
- Power, Fuel Cells
- New Products

Plastics, Polymers, Paints, Consumer products, Fuels
Transition: Chemical to New Markets

Methanol (DME) Price/Cost, $/ton

Today

Future

Conventional Fuels at $20/B crude oil

Industry Trend

Today

Future

Methanol (DME) Price/Cost, $/ton

8
7
6
5
4
3
2
1
0

$/MMBTU

8
7
6
5
4
3
2
1
0

$/MMBTU

50 (70)

100 (140)

150 (210)
Large Methanol/MTO/DME plants (built, proposed)

Trinidad – (2) 5,000 TPD
Atlas Methanol
Methanol Holdings

NPC/Iran Methanol
5,000 TPD

Oman Methanol
5,000 TPD

Methanol Australia
5,000 TPD

Memo: Not including <5,000 MTPD methanol plants
Large Methanol/MTO/DME plants (built, proposed)

- **Trinidad** – (2) 5,000 TPD Atlas Methanol Methanol Holdings
- **NPC/Iran** Methanol 5,000 TPD
- **Oman Methanol** 5,000 TPD
- **Qatar/PetroWorld** >12,000 TPD
- **Nigeria/Eurochem** 7,500 TPD MTO
- **PetroWorld/Starchem** >12,000 TPD
- **Methanol Australia** 5,000 TPD

Memo: Not including <5,000 MTPD methanol plants
Proposed Supply for New Methanol/DME Markets: 23 MMTPA methanol

(Equivalent to 200,000 B/D GTL-FT)

Memo: Not including <5,000 MTPD methanol plants
Low-cost methanol production and technology developments create opportunities for large ethylene and propylene markets.

Technology Developers
- **MTO**
 - UOP/Norsk Hydro
 - ExxonMobil
- **MTP**
 - Lurgi/Statoil

Eurochem/Nigeria Gas to Polymers
7,500 tpd methanol, MTO
Methanol and DME for Power Generation

- Methanol/DME are excellent gas turbine fuels
- GE, Siemens Westinghouse provide commercial offerings of Methanol/DME-fired E class and F class gas turbines
- GE, SW guarantee power output, heat rate and performance
- Methanol/DME exhibit record efficiencies and low emissions

Fuel Grade Methanol for Power Generation - PetroWorld:

- Africa West Coast: 12,000-15,000 T/D, StarChem, July 2003

Picture Courtesy of GE
Focus: Significant progress since 2001 to commercialize GTL technologies for producing oxygenates

- About Methanol: Trends, Supply and New Markets
- About DME: Global Commercialization Activities
- “Poly-DMM” and DMC – Promising Fuels for Blending
- Beyond Methanol
- Key Messages
Methanol and DME: Twin Pillars

- DME Today: 0.15 million tpa specialty product business (aerosol propellant)
- Potential for very large fuel markets
- Manufacturing plants are very similar
- Capital cost differential small
- Co-production feasible
- Both can be versatile chemical feedstocks

DME can be manufactured from multi-feedstocks similar to methanol production ...

<table>
<thead>
<tr>
<th>Property</th>
<th>DME</th>
<th>Propane (Butane)</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling Point (deg C)</td>
<td>-25</td>
<td>-42 (-0.5)</td>
<td>65</td>
</tr>
<tr>
<td>Vapor Pressure @ 20 deg C (bar)</td>
<td>5.1</td>
<td>8.4 (2.1)</td>
<td>0.3</td>
</tr>
<tr>
<td>Liquid Density (kg/m³)</td>
<td>670</td>
<td>500 (610)</td>
<td>790</td>
</tr>
<tr>
<td>Lower Heating Value (MJ/kg)</td>
<td>28</td>
<td>46 (46)</td>
<td>20</td>
</tr>
<tr>
<td>Auto Ignition Temp @ 1 atm (deg C)</td>
<td>235-350</td>
<td>470 (365)</td>
<td>465</td>
</tr>
<tr>
<td>Explosion/Flammability Limit in air (vol %)</td>
<td>3.4-17</td>
<td>2.1-9.4 (1.9-8.4)</td>
<td>7.3-36</td>
</tr>
<tr>
<td>Octane, (R+M)/2</td>
<td>low</td>
<td>104</td>
<td>100</td>
</tr>
<tr>
<td>Cetane</td>
<td>55-60</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

- Today: Current suppliers for propellant market include Akzo Nobel, DuPont, and Mitsubishi Gas Chemicals.
- Tomorrow: Future mega-plant technology providers include Haldor Topsoe, Lurgi, Toyo Engineering, Mitsubishi Gas Chemicals and JFE Holdings.
Over the past 3 years, global recognition of DME’s potential manifested by the formation of three associations representing about 160 companies, technical institutes, universities and individuals

- To promote public awareness and DME application.
- www.aboutdme.org

- To coordinate Japanese National DME Initiative - $200 million over 2002-2005
- To develop DME manufacturing technology, shipping/distribution and marketing for multiple end-use applications

- To advance understanding and use in Korea.

Your are cordially invited to attend the First International DME Conference, October 12-14, 2004
Potential DME Demand in Asia

2010

Total = 105 Million T/yr

Source: JFE, “Feasibility Study of DME from Brown Coal in Australia, 2001
DME in China

Shandong Jiutai Chemical Industry, Linyl, Shandong
- 30,000 T/yr. December 2003 start-up.
- 60,000 T/yr. Construction started January 2004
- Plans to increase production capacity to 300,000 T/yr by end of 2005; then to 1 million T/yr by 2009.

Luthianhua Group Inc, Luzhou, Sichuan
- 10,000 T/y – Commercial DME plant for fuel use - August 2003 start-up. Toyo Engineering methanol dehydration technology.
- 110,000 T/y – with 2005 start-up

• In the next 5 - 10 years, China will construct a group of large dimethyl ether units.
• Besides the units in Shandong and Sichuan, dimethyl ether units with different capacities will also be put up in Ningxia, Shanghai, Xinjiang and Shaanxi.

So: China Chemical Reporter, May 26, 2004
DME in Japan

Japan DME Forum coordinates multiple programs.....

• Utilization
 • Power generation systems
 • Household/industry fuel
 • Diesel related technologies
 • Emission tests from diesel engine
 • Marketing study
 • Road test of DME vehicles

• Production
 • Production technologies
 • Ocean transportation

• Codes & Standards
 • Studies for standardization of DME fuel

DME Commercial Projects - Studies
• Japan DME Ltd: 5,000 t/d, Western Australia
• DME International Inc, 2,500-4,000 t/d, Qatar/Indonesia/Australia
• Mitsui & Co, TEC: 7,000 t/d, Iran, Indonesia

Direct process (JFE)
100t/d demonstration plant (2003-)
DME in Korea

- Conducting engine research, elaster testing
- DME Pilot Plant (100 kg/d), KOGAS R&D Center
DME in Iran

Commercial Methanol-DME Plant (proposed)
- South Pars Field
- 1.7 million tpa methanol equivalent
- 50% methanol converted to DME
- DME for domestic LPG market as 20% blend

DME R&D Project
- Technology Assessment
- Economic Studies
- Study of application as fuel

Source: K. Sadaghiani, RIPI, Iran, CWC GTL Summit, May 19, 2004
Other DME Activities Around the World *

Sweden
- DME from Biomass Gasification Project
- Fossil Fuel Free Växjö

Russia
- Moscow program: "Alternative fuels use in city’s motor transport for 2002-2004”
- VNIIGAZ (GAZPROM Research Institute) developing technology to manufacture DME

USA
- DME-Fueled Shuttle Bus Demonstration, Penn State University

Italy
- Snamprogetti Program: DME as LPG substitute, and LPG/DME interchangeability in diesel engines (with SwRI)

Brazil
A network, headed by the Petrobras Research Centre, was established including one Research Institute and three University Laboratories.

Europe/USA
- AFFORHD. Alternative Fuel for Heavy Duty Engines
- Volvo, AVP/PTI, DTU, BP, TNO, Växjö
- 2002-2004, 4 million euro

Ocean Transport
- DME has been accepted in the IMO Gas Carrier Code, according to Norske Veritas, DNV. DNV can issue safety certificates for gas carriers to transport DME (September 2003)

* Only a partial list of the extensive global efforts
Focus: Significant progress since 2001 to commercialize GTL technologies for producing oxygenates

- About Methanol: Trends, Supply and New Markets
- About DME: Global Commercialization Activities
- “Poly-DMM” and DMC – Promising Fuels for Blending
- Beyond Methanol
- Key Messages
“Poly-DMM” – Diesel Blending Stock

Dimethoxymethane (DMM)

Dimethyldioxymethylene (DMM$_2$)

Poly-Dimethoxymethane (DMM$_x$)

DMM$_{3-8}$

- Most suitable DME analog
- Can be blended with diesel without engine modifications
- Low emissions in engine testing
- Made from methanol, DME and formaldehyde via low temperature catalytic distillation reactor with acidic catalyst

<table>
<thead>
<tr>
<th></th>
<th>DMM</th>
<th>DMM$_2$</th>
<th>DMM$_{3-8}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP, °F</td>
<td>107</td>
<td>221</td>
<td>306-599</td>
</tr>
<tr>
<td>Flash Pt., °F</td>
<td>0</td>
<td><75</td>
<td>150</td>
</tr>
<tr>
<td>Cetane No.</td>
<td>28</td>
<td>41</td>
<td>76</td>
</tr>
</tbody>
</table>

PM and NOx Emissions of 7 test fuels

Source: DOE/SWRL
Dimethylcarbonate (DMC) for Gasoline Blending

- High octane and oxygen content
- Non-toxic and biodegradable
- High oxygen content leads to lower emissions
- Manufacturing:
 - Oxidative Carbonylation of methanol
 \[2 \text{CH}_3\text{OH} + \text{CO} + 0.5 \text{O}_2 \rightarrow \text{CH}_3\text{O}\text{COOCH}_3 + \text{H}_2\text{O}\]
 - Needs to be improved

It’s time to take another look at DMC
Beyond Methanol: Looking to the Future

- BP working with Berkeley, CalTech and the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences
- Over 50 researchers and faculty focus on creating breakthrough – eg. Direct conversion routes
Key Messages

Dramatic progress has been made in the past 3 years in cost reduction and market development.

- Lower-cost methanol is creating new market opportunities
- DME is the most promising methanol derivative
- A global DME effort has evolved - led by Asia. IDA, JDF and KDF have been formed.
- Poly-DMM for and DMC represent research opportunities as fuel additives

The Future is Now