GTL in the XTL Mix

SMi Gas to Liquids Conference London October 2010

Iraj Isaac Rahmim, Ph.D. E-MetaVenture, Inc. Houston, Texas

Copyright © 2010 by E-METAVENTURE, INC. All Rights Reserved.

GTL, CTL, BTL Interactions

- Current interest in CTL & BTL
- Difference between GTL, CTL, BTL product quality
- Effect of CTL & BTL product volumes on GTL commercial space
- Critical issues that might affect GTL:
 - Biomass as BTL feedstock
 - XTL Economics and resource availability
 - CTL CO₂ emissions

SMi Gas to Liquids 2010-London

E-METAVENTURE, INC.

About E-MetaVenture, Inc.

- Consulting, Design, Training firm established in 2000
- XTL, petroleum refining & gas processing, novel technologies
- Feasibility studies, technology evaluation, process design, energy optimization, project development, litigation support, customized training, strategy development
- Active in the Middle East, East Asia, North & South America, Europe

CTL in Crossroads

- Significant coal reserves worldwide:
 - To last ~150 years at current usage
 - More evenly distributed with significant reserves in USA, China, Russia, India, Australia
- Existing CTL: approx. 150 KBD
 - South Africa Sasolburg converted to GTL
 - Inner Mongolia DCL (shakedown/startup)
 - Large number of projects in development
 - China, India, Australia,...
- Technology improvements:
 - FT, gasification, and post-processing
 - Other options including co-generation
 - Critical issue: CO₂ emissions and fate

Smi Gas to Liquids 2009—London

E-METAVENTURE, INC.

BTL of Great Interest

- Crowded technology space; much in development
- Great political and policy interest in BTL and other biomass-tofuels
 - Example: US DOE Biorefinery Assistance Program included
 \$100s of million on BTL-related R&D in 2009
- 1st, 2nd, 3rd generation biomass-to-fuel technology and commercialization using a variety of feeds
- Feedstock can be used to make products through non-FT routes:
 - Ethanol, Bio-diesel, Pyrolysis oils, Bio-DME,...
- Testing many different and unique biomass feeds. Example: Kentucky Horse Park to build a biomass gasification plant <u>at the</u> <u>park</u> to process 3,450 tons/yr of horse muck to generated 1.6 MWh of electricity!

SMi Gas to Liquids 2010-London

E-METAVENTURE, INC.

GTL, CTL, BTL Interactions

- Current interest in CTL & BTL
- Difference between GTL, CTL, BTL product quality
- Effect of CTL & BTL product volumes on GTL commercial space
- Critical issues that might affect GTL:
 - Biomass as BTL feedstock
 - XTL Economics and resource availability
 - CTL CO₂ emissions

E-METAVENTURE, INC.

Major XTL Products

Sample product slate for 100 KBD facility

LPG	2	4	 Similar to other plant (LNG, refinery) LPG 	• Can be co-processed and marketed with them
Naphtha	18	26	Straight chain paraffinicNear zero sulfur	 Preferred use: steam cracker feed
Jet-Kero /Diesel	50	70	High cetaneNear zero sulfur	Low densityLow aromatics
Lubes	30	<1	High gradeLow volatilityLow pour point	Low viscosityLow sulfur
Wax	10	<1	• High quality	
Specialty	α -Olefins, Solvents, Detergents, Drilling Fluids,			

Difference between GTL v. CTL/BTL Product Quality? Naphtha Coal **Classic CTL** Vacuum Residue Fuel Oil

- H2/CO ratio in syngas << 2.1 (ideal value)
- Iron-based FT catalyst to allow for water-gas shift chemistry $CO + H_2O \leftrightarrows CO_2 + H_2$
- Lower productivity with Fe-based catalyst
- Different product distribution, branching structure, saturation

Sample FT Reactor Product Distribution

	Iron-Based	Cobalt-Based		
Naphtha	10%	15%		
Jet & Diesel	20%	30%		
Wax (C20+)	60%	40%		
Olefinic Paraffinic				
After Peter Tijm (2007)				
SMi Cas to Liquids 2010 London				

E-METAVENTURE, INC.

JIVII UAS 10

More on Classic CTL v. GTL

- Downstream processing differences (hydrotreating, mild hydrocracking, isomerization) to meet product specifications
- Significant impurities in CTL/BTL feedstock when compared with GTL feeds
 - (Side note: Co-based FT catalyst highly sulfur-sensitive)
 - Impurities (sulfur, nitrogen, metals) removed via various processes in order to meet product specifications
- <u>Implication</u>: higher capital and operating cost for CTL

Work continues On improving FT using novel reactors and catalyst

> Velocys microchannel FT reactor

Syntroleum cobalt-based catalyst for use in CTL/BTL

E-METAVENTURE, INC.

New Jet Fuel Specifications ASTM D-7566 approved for 50/50 blend in October 2009

- "Drop-in" as alternatives to petroleum-based jet (D-1655)
 - Completely interchangeable and compatible
 - No requirement for modification/adaptation of fuel distribution network or engine fuel system
- No differentiation made between CTL, GTL, or BTL source

	GTL Jet (Syntroleum)	CTL Jet (Sasol)	JP-8 Average	JP-8 Specs
Paraffins (vol%)	100	100	60-80	
Aromatics (vol%)	0	0	17.9	< 25
Specific Gravity	0.756	0.760- 0.775	0.803	0.775- 0.84
Flash Point (°C)	45	42-57	49	> 38
Freeze Point (°C)	-51	<-60	-51.5	< -47
H2 Content (mass%)	15.4	15.06	13.84	>13.4
Heat of Combustion (MJ/Kg)	44.1	43.2- 44.0	43.25	>42.8
Sulfur (wt%)	0	0	0.05	< 0.3
After R. L. Altman (2009)				
SMI GAS TO LIQUIDS 2010—LONDON				

E-METAVENTURE, INC.

GTL, CTL, BTL Interactions

- Current interest in CTL & BTL
- Difference between GTL, CTL, BTL product quality
- Effect of CTL & BTL product volumes on GTL commercial space
- Critical issues that might affect GTL:
 - Biomass as BTL feedstock
 - XTL Economics and resource availability
 - CTL CO₂ emissions

E-METAVENTURE, INC.

Will BTL/CTL Volumes Affect the GTL Product Market Space?

- EIA and others' XTL volume projections
- Consider the cases of diesel and lubricants
- Issues include:
 - Significant flux due to policy zigzags, economic conditions, environmental concerns
 - Technology developments and their impacts
 - Feedstock availability and price
 - Other potential uses for BTL/CTL feedstocks
 - Other (parallel) technologies for diesel augmentation/replacement

E-METAVENTURE, INC.

GTL Diesel Supply Projections

- Approx. 50 KBD 2009 total liquid production capacity
 - South Africa mix of CTL and some GTL
 - Includes nameplate 33,000 BPD for QP/Sasol Oryx I

• Qatar Shell Pearl (140,000 BPD, start-up 2011-2012)

Nigeria Escravos Sasol/Chevron (34,000 BPD, startup 2013?)

• Trinidad World GTL stopped & in receivership (2,250 BPD)

- A large number of potential projects; a small fraction likely to be built
- Many ups & downs. Example: PRC rule changes regarding NG use in the last 2-3 years
- California Energy Commission estimate:
 - 2015: 388 KBD global GTL diesel
 - 2020: 800 KBD
- Sasol Chevron estimate: 600 KBD by 2016-2019
- EIA 2009: 200-700 KBD by 2030 (range due to investment scenarios)
 (0 KBD projected for US)

E-METAVENTURE, INC.

CTL Diesel Supply Projections

- Key potential locations: US, Peoples Republic of China, Russia, Australia, ...
- PRC projections & activity:
 - 2007 study: as much as 160 KBD liquid fuels projected
 - Another (IEA, 2007): 180 KBD by 2015, 750 KBD by 2030
 - Environmental concerns—all but two projects cancelled (20008-09)
 - 20 KBD Inner Mongolia DCL: trial operation (Oct. 2009)
- USA projections (EIA 2010):
 - 110 KBD for US by 2020!
 - 230-250 KBD for US by 2035
- Worldwide projections 300-2,000 KBD by 2030 (range due to investment scenarios; EIA 2009)
- Technological improvements critical including in-situ gasification, CO₂ sequestration and re-conversion, *etc.*—many at early stages
- Internal analysis based on technology, environmental, political, policy factors:
 - 300-500 KBD by 2020
 - 600-1,000 KBD by 2035

E-METAVENTURE, INC.

BTL Diesel Supply Projections

- US EIA 2010 for all "biofuels" including ethanol, biodiesel, FT-based, *etc*.
 - From a current/actual of close to 1 million BPD
 - 1.25 million BPD by 2020
 - 2.56 million BPD by 2035
- Our analysis based on feedstock availability, economics, capital concerns, technology development rates:
 - 200-400 KBD BTL diesel by 2020
 - 500-700 KBD by 2035

E-METAVENTURE, INC.

FT Diesel v. Global Middle Distillates MDist (incl. Jet/Kero) projections at 3% annual growth

Lubes Markets

Basestock global market size ~ 962 KBD in 2008 (800 KBD in 2005)

• Slow overall growth

- Rapid demand growth in developing regions (e.g., China, Brazil)
- Decline in US, WE, Japan, Australia, New Zealand
- Overall in 2008: 1.4% growth (1.8% in 2005)
- Assuming 1.6% growth rate:
 - 1,160 KBD market size in 2020
 - 1,480 KBD in 2035

E-METAVENTURE, INC.

Potential XTL Lubes Impact

- Consider previous 2035 XTL projections
- Without hydrocracking, potential lubes manufacture approx. 50-60% of diesel
 - 2035: 650-1,200 KBD
 - Market overwhelmed
- Hydrocracking will continue to be a key component of most or all new XTL facilities
- Likely scenario in terms of impact of XTL on lubes markets:
 - XTL lubes will trigger shutdown of less efficient lube capacity
 - Group I plants highest manufacturing cost—have been shutting down

E-METAVENTURE, INC.

GTL, CTL, BTL Interactions

- Current interest in CTL & BTL
- Difference between GTL, CTL, BTL product quality
- Effect of CTL & BTL product volumes on GTL commercial space
- Critical issues that might affect GTL:
 - Biomass as BTL feedstock
 - XTL Economics and resource availability
 - CTL CO₂ emissions

E-METAVENTURE, INC.

Critical Issue: Biomass as BTL Feedstock

- Feed availability and impact on food supply/environment
- Issues of "green-ness" and true sustainability
- Types of feed and yields
- 1st, 2nd, 3rd generation biomass to fuel technology and commercialization

- <u>1st generation</u>: biofuels from sugar cane or corn (commercial in small & large scales)
- <u>2nd generation</u>: biofuels from waste vegetable elements such as corn stover, cane bagasse, wheat straw, hay, soft wood, stems, leaves, wood chips, pulp, grass and other cellulosic matter (in R&D, pilot testing stages)
- <u>3rd generation (aka "holy grail")</u>: biofuels from algae (in R&D)

E-METAVENTURE, INC.

Some Potential BTL Feedstocks

	Liquid Yield (Gallons/Year/Acre)	Fuel Type	Land Needed to Produce 1 million BPD (Km ²)	
Corn	15-18	Alcohol	3,716,364	Crop area:
Sugar cane	20-25	Alcohol	2,725,333	2171,000 Km ²
Soybean oil	40-50	Diesel	1,362,667	
Sunflower oil	100-105	Diesel	598,244	
Palm oil	600-650	Diesel	98,112	UK total arable land:
Coconut oil	280-300	Diesel	211,448	744,000 Km ²
Caster oil	150-155	Diesel	402,098	(includes woodland,
Olive oil	120-130	Diesel	490,560	grasses,
Rapeseed oil	125-130	Diesel	480,941	rough grazing,
Micro-algae	1850-5000	Alcohol/Diesel	17,904	Set-aside)

Based on D. P. Lal (2010). Note: micro-algae Km² is for pond surface area.

E-METAVENTURE, INC.

Critical Issue: Economics and Resources

• Economics of XTL and impact on speed and degree of commercialization

- GTL: have several examples by now, ranging from \$30 K/BBL capacity and up
- CTL: \$85-100 K/BBL and up
- BTL: likely in the CTL range
- Consider projected worldwide capacities and potential total capital cost

	Projected Capacity by 2030-2035 (KBD)	Projected Capital (Bil. 2010 dollars)
GTL	200-700	6-21
CTL	600-1,000	60-100
BTL	500-700	50-70

- Each project will be multi-billions requiring several partners and conservative due-diligence
- Other biofuels, alternative-resource projects will compete for same capital, feedstocks, skills/resources
- Other resources to consider: manpower and skills, E&C and construction material availability

E-METAVENTURE, INC.

Critical Issue: Environmental Impacts, Politics, Policy

- Issue of CO_2 , water usage, environmental impact
 - CO₂ fate and options
 - Impact of all above on the economics, direction, speed of development
 - Example: China 2008 decision on CTL
- CO_2 from CTL: ~0.65 ton CO_2 per Bbl of liq. Prod.
 - 50,000 BPD plant: 11.3 million tons CO_2 /year
 - One million BPD: 226 million tons CO_2 /year
 - Is this significant?
 - How important is it to carbon capture and sequester (CCS)?
 - Are there other mitigation options?

E-METAVENTURE, INC.

CTL CO₂ Emission Projections

- CTL with no mitigation: emissions better than coal-fired power plants
- CTL with mitigation: emissions on par with refineries
 - Typical CCS in CTL: 80-90% CO₂ emission reduction
- Large stationary source CO₂ in 2005: 13,466 million tons

	Consider EIA (2007) US CTL projections		
Nearl	with CCS	without CCS	Projected Emissions from CTL (million tons CO ₂ /years)
Weste	1-8	10-41	2015
CO ₂	3-12	28-61	2020
Plan to in	17-46	175-230	2030
No CTL	0.1-0.3	1.3-1.7	2030 CTL Emissions as % 2005 Global <u>Large Stationary</u> Sources

KEY NOTE

Nearly all responsible Western parties agree

 CO_2 issue is critical

Plan to incorporate mitigation

No CTL without mitigation

E-METAVENTURE, INC.

Rough CTL+CCS Economics 50,000 BPD*

- Consider 50,000 BPD CTL
- Addition of CCS (incl. 50 km pipeline):
 - \$300 MM extra to TIC
 - Or \$230 MM/year to operating costs (including amortized TIC addition)

Case	CTL	CTL+CCS
ROI	16.8 %	11.3 %
Simple Payout	6 years	9 years

One scenario. For discussion purposes only. Results depend on a number of variables and parameters.

E-METAVENTURE, INC.

SMi Gas to Liquids 2010—London

ISSUE

Mitigation Studies Proceeding at Slow Pace

Other Approach to CO₂ Issue?

- Significant R&D on conversion to useful products.
- Including catalytic and biocatalytic technologies. Examples:
 - Carbon Sciences Inc. (USA): to methanol, diesel/gasoline/jet
 - Agency for Marine-Earth Science & Technology (Japan): to methane
 - Mantra Venture Group (Canada): to formic acid, formate salts, oxalic acids, methanol
 - University of Oxford (UK): to methanol
 - Sandia National Laboratory & partners (USA): to diesel
- US DOE funding several projects including CO₂ mineralization to bicarbonate & carbonates (ultimately to construction materials), conversion to plastics polycarbonate products, biofuels and "biocrudes" using algae, *etc*.
- Additionally, significant work on improving CCS efficacy and economics

E-METAVENTURE, INC.

Summary

- Little difference in quality between GTL and other XTL products
 - In most cases and using the modern proper process design
- CTL/BTL volumes unlikely to adversely affect major fuel (*e.g.*, jet, diesel) markets
- CTL/BTL volumes could contribute to oversaturation of lubes and wax markets
 - New units will continue to include mild hydrocracking
- Biomass-as-feedstock is evolving rapidly with much R&D and room for improved productivity
- Commercialization to continue in a measured pace due to their high capital cost and resource requirements
- Issue of CO₂ emissions from CTL (and possibly BTL) is critical and could impede commercialization progress

E-METAVENTURE, INC.

Contact Information

Iraj Isaac Rahmim, PhD E-MetaVenture, Inc. P. O. Box 271522 Houston, Texas 77277-1522 USA Email: iir at e-metaventure dot com www dot e-metaventure dot com

E-METAVENTURE, INC.